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Markov chain Monte Carlo

12.1 Overview

In the last chapter, we discussed a variety of approaches to estimate the most probable
set of parameters for nonlinear models. The primary rationale for these approaches is
that they circumvent the need to carry out the multi-dimensional integrals required in
a full Bayesian computation of the desired marginal posteriors. This chapter provides
an introduction to a very efficient mathematical tool to estimate the desired posterior
distributions for high-dimensional models that has been receiving a lot of attention
recently. The method is known as Markov Chain Monte Carlo (MCMC). MCMC was
first introduced in the early 1950s by statistical physicists (N. Metropolis,
A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller) as a method for the simulation
of simple fluids. Monte Carlo methods are now widely employed in all areas of science
and economics to simulate complex systems and to evaluate integrals in many dimen-
sions. Among all Monte Carlo methods, MCMC provides an enormous scope for
dealing with very complicated systems. In this chapter we will focus on its use in
evaluating the multi-dimensional integrals required in a Bayesian analysis of models
with many parameters.

The chapter starts with an introduction to Monte Carlo integration and exam-
ines how a Markov chain, implemented by the Metropolis—Hastings algorithm, can
be employed to concentrate samples to regions with significant probability. Next,
tempering improvements are investigated that prevent the MCMC from getting
stuck in the region of a local peak in the probability distribution. One such method
called parallel tempering is used to re-analyze the spectral line problem of Section 3.6.
We also demonstrate how to use the results of parallel tempering MCMC for model
comparison. Although MCMC methods are relatively simple to implement, in
practice, a great deal of time is expended in optimizing some of the MCMC
parameters. Section 12.8 describes one attempt at automating the selection of
these parameters. The capabilities of this automated MCMC algorithm are demon-
strated in a re-analysis of an astronomical data set used to discover an extrasolar
planet.
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12.2 Metropolis—Hastings algorithm

Suppose we can write down the joint posterior density,' p(X|D, I), of a set of model
parameters represented by X. We now want to calculate the expectation value of some
function f{X) of the parameters. The expectation value is obtained by integrating the
function weighted by p(X|D, I).

(X)) = / SXOP(X|D, 1)dX = / ¢(X)dx. (12.1)

For example, if there is only one parameter and we want to compute its mean value, then
f1X) = X. Also, we frequently want to compute the marginal probability of a subset X4
of the parameters and need to integrate over the remaining parameters designated Xp.
Unfortunately, in many cases, we are unable to perform the integrals required in a
reasonable length of time. In this section, we develop an efficient method to approxi-
mate the desired integrals, starting with a discussion of Monte Carlo integration. Given
a value of X, the discussion below assumes we can compute the value of g(X).

In straight Monte Carlo integration, the procedure is to pick » points, uniformly
randomly distributed in a multi-dimensional volume (¥) of our parameter space X.
The volume must be large enough to contain all regions where g(X) contributes
significantly to the integral. Then the basic theorem of Monte Carlo integration
estimates the integral of g(X) over the volume ¥V by

(00) = [ enax =V x (10 ¥ x \/ )= XN (15,

n

where

((0) == g(X); (@(0) =23 (X)), (12,3
i=1 i=1

There is no guarantee that the error is distributed as a Gaussian, so the error term is
only a rough indicator of the probable error. When the random samples X; are
independent, the law of large numbers ensures that the approximation can be made
as accurate as desired by increasing n. Note: n is the number of random samples of
g(X), not the size of the fixed data sample. The problem with Monte Carlo integration
is that too much time is wasted sampling regions where p(X|D,I) is very small
Suppose in a one-parameter problem the fraction of the time spent sampling regions
of high probability is 10~!. Then in an M-parameter problem, this fraction could
easily fall to 107, A variation of the simple Monte Carlo described above, which
involves reweighting the integrand and adjusting the sample rules (known as “import-
ance sampling”), helps considerably but it is difficult to design the reweighting for
large numbers of parameters.

! In the literature dealing with MCMC, it is common practice to write n(X) instead of p(X|D,I).



314 Markov chain Monte Carlo

In general, drawing samples independently from p(X|D, I) is not currently computa-
tionally feasible for problems where there are large numbers of parameters. However, the
samples need not necessarily be independent. They can be generated by any process that
generates samples from the target distribution, p(X|D, I), in the correct proportions. All
MCMC algorithms generate the desired samples by constructing a kind of random walk
in the model parameter space such that the probability for being in a region of this space
is proportional to the posterior density for that region. The random walk is accomplished
using a Markov chain, whereby the new sample, X1, depends on the previous sample
X, according to an entity called the transition probability or transition kernel, p(X,,1|X,).
The transition kernel is assumed to be time independent. The remarkable property of
P(X;41]X;) is that after an initial burn-in period (which is discarded) it generates samples
of X with a probability density equal to the desired posterior p(X|D, I).

How does it work? There are two steps. In the first step, we pick a proposed value for
X .11 which we call ¥, from a proposal distribution, q( ¥|X,), which is easy to evaluate. As
we show below, ¢( Y| X,) can have almost any form. To help in developing your intuition,
it is perhaps convenient to contemplate a multivariate normal (Gaussian) distribution for
q(Y]X,), with a mean equal to the current sample X,. With such a proposal distribution,
the probability density decreases with distance away from the current sample.

The second step is to decide on whether to accept the candidate Y for X, on the
basis of the value of a ratio r given by

_ p(Y|D,1) ¢(Xi|Y)
"= p(XID, 1) q(Y]X,)’ (12.4)

where r is called the Metropolis ratio. If the proposal distribution is symmetric, then the
second factor is = 1. If r > 1, then we set X,y = Y. If r < 1, then we accept it with a
probability = r. This is done by sampling a random variable U from Uniform(0, 1), a
uniform distribution in the interval 0 to 1. If U < r we set X,,; = ¥, otherwise we set
X411 = X,. This second step can be summarized by a term called the acceptance prob-
ability a(X,, Y) given by

: - ( YD, 1) g(X.|Y)
a(X;, ¥Y) =min(1,r) mm(l’p(X,|D,1) q(Y]X,))' (12.5)
The MCMC method as initially proposed by Metropolis et al. in 1953, considered
only symmetric proposal distributions, having the form ¢(¥|X;) = ¢(X;|Y). Hastings
(1970) generalized the algorithm to include asymmetric proposal distributions and the
generalization is commonly referred to as the Metropolis—Hastings algorithm. There
are now many different versions of the algorithm.
The Metropolis—Hastings algorithm is extremely simple:

1. Initialize Xp; set t = 0.
2. Repeat {Obtain a new sample ¥ from ¢(Y|X;)
Sample a Uniform(0,1) random variable U
If U <rset X,,; =Y otherwise set X,, | = X, Increment ¢}
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Example 1:
Suppose the posterior is a Poisson distribution, p(X|D,I) = A¥e=*/X1. For our pro-
posal distribution ¢(¥|X,), we will use a simple random walk such that:

1. Given X,, pick a random number U; ~ U(0, 1)
2. If U, > 0.5, propose ¥ = X, + 1 otherwise Y = X, — 1
3. Compute the Metropolis ratio r = p(Y|D,I)/p(X,|D,I) = X=X X,/ 1
4. Acceptance/rejection: U, ~ U(0, 1)
Accept Xy = Yif Uy < r otherwise set X1 = X

Figure 12.1 illustrates the results for the above simple MCMC simulation using a
value of A=3 and starting from an initial Xy = 10 which is far out in the tail of the
posterior. Panel (a) shows a sequence of 1000 samples from the MCMC. It isclear that
the samples quickly move from our starting point far out in the tail to the vicinity of
the posterior mean. Panel (b) compares a histogram of the last 900 samples from the
MCMC with the true Poisson posterior which is indicated by the solid line. The
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Figure 12.1 The results from a simple one-dimensional Markov chain Monte Carlo simulation
for a Poisson posterior for X. Panel (a) shows a sequence of 1000 samples from the MCMC.
Panel (b) shows a comparison of the last 900 MCMC samples with the true posterior indicated
by the solid curve.
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agreement is very good. We treated the first 100 samples as an estimate of the burn-in
period and did not use them.

Example 2:

Now consider a MCMC simulation of samples from a joint posterior p(X1, X2|D, 1) in
two parameters X; and X>, which has a double peak structure. Note: if we want to refer
to the ¢th time sample of the ith parameter from a Markov chain, we will do so with the
designation X, ;. We define the posterior in Mathematica with the following commands.

Needs[“Statistics ‘Multinormal Distribution’ ”]

dist1 = MultinormalDistribution [{0, 0}, {{1, 0}, {0,1}}]

The first argument {0, 0} indicates the multinormal distribution is centered at 0,0.
The second argument {{1, 0}, {0, 1}} gives the covariance of the distribution.
dist2 = MultinormalDistribution[{{4, 0}, {{2, 0.8}, {0.8,2}}]

Posterior = 0.5 (PDF[dist1, {X,, X,}]+ PDF[dist2, {X;, X,}])

The factor of 0.5 ensures the posterior is normalized to an area of one.

In this example, we used a proposal density function (¥, Y2| X7, X3) which is a
two-dimensional Gaussian (normal) distribution.

[MultinormalDistribution[{X;,X;}, {{03,0},{0,03}}]]

The results for 8000 samples of the posterior generated with this MCMC are shown
in Figure 12.2. Note that the first 50 samples were treated as the burn-in period and are
not included in this plot. Panel (a) shows a sequence of 7950 samples from the MCMC
with o1 = 02 = 1. The two model parameters represented by X; and X> could be very
different physical quantities each characterized by a different scale. In that case, o
and o3 could be very different. Panel (b) shows the same points with contours of the
posterior overlaid. The distribution of sample points matches the contours of the true
posterior very well. Panel (c) shows a comparison of the true marginal posterior (solid
curve) for X; and the MCMC marginal (dots). The MCMC marginal is simply a
normalized histogram of the X} sample values. Panel (d) shows a comparison of the
true marginal posterior (solid curve) for X; and the MCMC marginal (dots). In both
cases, the agreement is very good.

We also investigated the evolution of the MCMC samples for proposal distributions
with different values of o. Panel (a) in Figure 12.3 shows the case fora o ~ 1/10 the
scale of the smallest features in the true posterior. The starting point for each simula-
tionwas at X7 = —4.5, X3 = 4.5. In this case, the burn-in period is considerably longer
and it appears that a larger number of samples would be needed to do justice to the
posterior which is indicated by the contours. Panel (b) illustrates thecase for o = 1, the
value used for Figure 12.2. Panel (c) uses a o ~ 10 times the scale of the smallest
features in the posterior. From the density of the points it appears that we have used a
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Figure 12.2 The results from a two-dimensional Markov chain Monte Carlo simulation of a
double peaked posterior. Panel (a) shows a sequence of 7950 samples from the MCMC. Panel
(b) shows the same points with contours of the posterior overlaid. Panel (c) shows a comparison
of the marginal posterior (solid curve) for X; and the MCMC marginal (dots). Panel (d) shows a
comparison of the marginal posterior (solid curve) for X3 and the MCMC marginal (dots).
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Figure 12.3 A comparison of the samples from three Markov chain Monte Carlo runs using
Gaussian proposal distributions with differing values of the standard deviation: (a) o = 0.1,
(b) o =1, (¢) & = 10. The starting point for each run was at X; = —4.5 and X; =4.5.
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much smaller number of MCMC samples. In fact we used the same number of
samples. Recall that in MCMC we carry out a test to decide whether to accept the
new proposal (see discussion following Equation (12.4)). If we fail to accept the
proposal, then we set X;; = X,. Thus, many of the points in panel (c) are repeats of
the same sample as the proposed sample was rejected on many occasions.

It is commonly agreed that finding an ideal proposal distribution is an art. If we
restrict the conversation to Gaussian proposal distributions then the question
becomes what is the optimum choice of 0? As mentioned earlier, the samples from a
MCMC are not independent, but exhibit correlations. In Figure 12.4, we illustrate the
correlations of samples corresponding to the three choices of o used in Figure 12.3 by
plotting the autocorrelation functions (ACFs) for X,. The ACF, p(h), which was
introduced in Section 5.13.2, is given by

_ S overapl(Xe = 1) (X = T)
\/Eoverlap(X-' - 7)2 X \/Eoverlap(XrHr - 7)2

where X, ; is a shifted version of X, and the summation is carried out over the subset
of samples that overlap. The shift 4 is referred to as the /ag. It is often observed that
p(h) is roughly exponential in shape so we can model the ACF

p(h)

, (12.6)

h
p(h) ~ exp{——1}. (12.7)
Texp
The autocorrelation time constant, 7exp, reflects the convergence speed of the MCMC
sampler and is approximately equal to the interval between independent samples. In
general, the smaller the value of 7., the better, i.e., the more efficient, the MCMC
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Figure 12.4 A comparison of the autocorrelation functions for three Markov chain Monte Carlo
runs using Gaussian proposal distributions with differing values of the standard deviation:
c=0.1,6=1,6=10.



12.3 Why does Metropolis—Hastings work? 319

sampler is. Examination of Figure 12 .4 indicates that of the three choices of o chosen
above, o = 1.0leads to the smallest values of 7¢xp, for X». Of course, in this example just
considered, we have set oy, = ox,. In general, they will not be equal. Related to the
optimum choice of ¢ is the average rate at which proposed state changes are accepted,
called the acceptance rate. Based on empirical studies, Roberts, Gelman, and Gilks
(1997) recommend calibrating the acceptance rate to about 25% for a high-dimensional
model and to about 50% for models of one or two dimensions. The acceptance rates
corresponding to our three choices of o in Figure 12.3 are 95%, 63%, and 5%,
respectively.

A number of issues arise from a consideration of these two simple examples. How
do we decide: (a) the length of the burn-in period, (b) when to stop the Markov chain,
and (c) what is a suitable proposal distribution? For a discussion of these points, the
reader is referred to a collection of review and application papers (Gilks, Richardson,
and Spiegelhalter 1996). For an unpublished 1996 roundtable discussion of informal
advice for novice practitioners, moderated by R. E. Kass, see www.amstat.org/
publications/tas/kass.pdf. The treatment of MCMC given in this text is intended
only as an introduction to this topic.

Loredo (1999) gives an interesting perspective on the relationship between the devel-
opment of MCMC in statistics and certain computational physics techniques. Define a
function A(X) = — In[p(X|I) p(D|X, I)]. Then the posterior distribution can be written
asp(X|D,I) = e 2% /Z where Z = [dX e~ Evaluation of the posterior resembles
two classes of problems familiar to physicists: evaluating Boltzmann factors and parti-
tion functions in statistical mechanics, and evaluating Feynman path weights and path
integrals in Euclidean quantum field theory. For a discussion of some useful modern
extensions of the Metropolis algorithm that are particularly accessible to physical
scientists, see Liu (2001) and the first section of Toussaint (1989). A readable tutorial
for statistics students is available in Chib and Greenberg (1995).

12.3 Why does Metropolis—Hastings work?

Remarkably, for a wide range of proposal distributions ¢(¥Y|X), the
Metropolis—Hastings algorithm generates samples of X with a probability density
which converges on the desired target posterior p(X|D,I), called the stationary dis-
tribution of the Markov chain. For the distribution of X, to converge to a stationary
distribution, the Markov chain must have three properties (Roberts, 1996). First, it
must be irreducible. That is, from all starting points, the Markov chain must be able
(eventually) to jump to all states in the target distribution with positive probability.
Second it must be aperiodic. This stops the chain from oscillating between different
states in a regular periodic movement. Finally the chain must be positive recurrent.
This can be expressed in terms of the existence of a stationary distribution n(X), say,
such that if an initial value Xj is sampled from n(X), then all subsequent iterates will
also be distributed according to n(X).
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To see that the target distribution is the stationary distribution of the Markov chain
generated by the Metropolis—Hastings algorithm, consider the following: suppose we
start with a sample X, from the target distribution. The probability of drawing X, from
the posterioris p(X;|D, I). The probability that we will draw and accept a sample X, is
given by the transition kernel, p(X,11|X;) = ¢(Xi+1|X:) (X7, Xi41), Where (X7, Xi41)
is given by Equation (12.5). The joint probability of X; and X, is then given by

Joint probability(X,, X,11) = p(X;|D, ) p(Xi11]|X;)
= p(Xi|D, 1) q(X111|X:)a( Xy, Xi41)

. X:1|D, Xi| X
= p(X,|D, 1) g(Xen1 |X,) mm(l,f’;m;x I)I)qg( 4 er)))
= min(p(X;|D, I) ¢(X;11|X:), p(Xey1| D, D)g(X:| X111))
= p(Xe11D, 1) q(X:|X141)(Xis1, Xo)
=p(Xip [D, 1) p(Xi|Xi41).

Thus, we have shown

p(X;|D, 1) p(X; 11| X,) = p(Xipa| D, 1) p(X;|X141), (12.9)

which is called the detailed balance equation.

In statistical mechanics, detailed balance occurs for systems in thermodynamic
equilibrium.” In the present case, the condition of detailed balance means that
the Markov chain generated by the Metropolis—Hastings algorithm converges to a
stationary distribution.

Recall from Equation (12.8) that p(X;|D, I)p(X,11|X;) is the joint probability of X,
and X, ;. We will now integrate this joint probability with respect to X;, making use of
Equation (12.9), and demonstrate that the result is simply the marginal probability
distribution of X, ;.

(12.8)

/ (XD, 1) p(Xor| X)X, = / (XD, Dp(Xi|Xis1) dX,

= p(Xo41|D, ) / p(XlXor) X, (12.10)

=p(Xi11|D, ).

Thus, we have shown that once a sample from the stationary target distribution has
been obtained, all subsequent samples will be from that distribution.

2 It may help to consider the following analogy: suppose we have a collection of hydrogen atoms. The number of atoms
making a transition from excited state ¢ to state 1+ 1in 1 s is given by N x p(1) x p(r + 1]t), where N equals the total
number of atoms, p(r) is the probability of an atom being in state 1, and p(r + 1|¢) is the probability that an atom in state
t will make a transition to state ¢ + 1 in 1 s. Similarly the number making transitions from 1 + 1 to rin 1 s is given by
N x p(t+1) x p(t]t + 1). In thermodynamic equilibrium, the rate of transition from ¢ to r + 1 is equal to the rate from
t+1to1, so

p(1) x p(t+1)1) =p(t+1) x p(efr +1).
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12.4 Simulated tempering

The simple Metropolis—Hastings algorithm outlined in Section 12.2 can run into
difficulties if the target probability distribution is multi-modal. The MCMC can become
stuck in a local mode and fail to fully explore other modes which contain significant
probability. This problem is very similar to the one encountered in finding a global
minimum in a nonlinear model fitting problem. One solution to that problem was to use
simulated annealing (see Section 1 1.4.1) by introducing a temperature parameter 7. The
analogous process applied to drawing samples from a target probability distribution
(e.g., Geyer and Thompson, 1995) is often referred to as simulated tempering (ST). In
annealing, the temperature parameter is gradually decreased. In ST, we create a discrete
set of progressively flatter versions of the target distribution using a temperature
parameter. For 7 = 1, the distribution is the desired target distribution which is referred
toasthe cold sampler. For 7 >> 1, the distribution is much flatter. The basic idea is that
by repeatedly heating up the distribution (making it flatter), the new sampler can escape
from local modes and increase its chance of reaching all regions of the target distribution
that contain significant probability. Typical inference is based on samples drawn from
the cold sampler and the remaining observations discarded. Actually, in Section 12.7 we
will see how to use the samples from the hotter distributions to evaluate Bayes factors in
model selection problems.

Again, let p(X|D,I) be the target posterior distribution we want to sample.
Applying Bayes’ theorem, we can write this as

p(X|D, 1) = C p(X|I) x p(D|X, 1),

where C = 1/p(D|I) is the usual normalization constant which is not important at this
stage and will be dropped. We can construct other flatter distributions as follows:

n(X|D, 8,1) = p(X|)p(D|X, 1)’
= p(X|I) exp(B In[p(D|X,1)]), for0<pB<1.

Rather than use a temperature which varies from 1 to infinity, we prefer to use its
reciprocal which we label 8 and refer to as the tempering parameter. Thus 3 varies
from 1 to zero. We will use a discrete set of 3 values labeled {1, 3, -+, 3,}, where
[ = 1 corresponds to the cold sampler (target distribution) and ,, corresponds to our
hottest sampler which is generally much flatter. This particular formulation is also
convenient for our later discussion on determining the Bayes factor in model selection
problems. Rather than describe ST in detail, we will describe a more efficient related
algorithm called parallel tempering in the next section.

(12.11)

12.5 Parallel tempering

Parallel tempering (PT) is an attractive alternative to simulated tempering (Liu, 2001).
Again, multiple copies of the simulation are run in parallel, each at a different
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temperature (i.e., a different 8 = 1/7 ). One of the simulations, corresponding to
B =1/T =1, is the desired target probability distribution. The other simulations
correspond to a ladder of higher temperature distributions indexed by i. Let ng
equal the number of parallel MCMC simulations. At intervals, a pair of adjacent
simulations on this ladder are chosen at random and a proposal made to swap their
parameter states. Suppose simulations 3; and §;; are chosen. At time ¢, simulation 5;
is in state X,; and simulation [§;;; is in state X, ;1. If the swap is accepted by the test
given below then these states are interchanged. In the example discussed in Section
12.6, we specify that on average, a swap is proposed after every n;, iterations (1, = 30
was used) of the parallel simulations in the ladder. This is done by choosing a random
number, U; ~ Uniform[0,1], at each time iteration and proposing a swap only if
U, < 1/n,. If aswapis to be proposed, we use a second random number to pick one of
the ladder simulations i in the range i =1 to (np — 1), and propose swapping the
parameter states of i and i+ 1. A Monte Carlo acceptance rule determines the
probability for the proposed swap to occur. Accept the swap with probability

XiinlD, B; XD, B;
r:mln{l H( LH—]l !ASI!I)H( ."l'l !JBH-]!I)}, (1212)

"1(Xpi| D, Bi, 1) ©(X1i11|D, Bir, 1)

where n(X|D,(,I) is given by Equation (12.11). We accept the swap if U; ~
Uniform[0,1] < r.

This swap allows for an exchange of information across the population of parallel
simulations. In the higher temperature simulations, radically different configurations
can arise, whereas in lower temperature states, a configuration is given the chance to
refine itself. By making exchanges, we can capture and improve the higher probability
configurations generated by the population by putting them into lower temperature
simulations. Some experimentation is needed to refine suitable choices of §; values.
Adjacent simulations need to have some overlap to achieve a sufficient acceptance
probability for an exchange operation.

12.6 Example

Although MCMC really comes into its own when the number of model parameters is
very large, we will apply it to the toy spectral line problem we analyzed in Section 3.6,
because we can compare with our earlier results. The objective of that problem was to
test two competing models, represented by M and M>, on the basis of some spectral line
data. Only M, predicts the existence of a particular spectral line. In the simplest version
of the problem, the line frequency and shape is exactly predicted by M,; the only
quantity which is uncertain is the line strength 7 expressed in temperature units. The
odds ratio in favor of M, was found to be 11:1 assuming a Jeffreys prior for the line
strength. We also computed the most probable line strength. In Section 3.9, we inves-
tigated how our conclusions would be altered if the line frequency were uncertain, i.e., it
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could occur anywhere between channels 1 to 44. In that case, the odds ratio favoring M,
dropped from 11:1 to = 1:1, assuming a uniform prior for the line center frequency.
Below, we apply both the Metropolis—Hastings and parallel tempering versions of
MCMC to the problem of estimating the marginal posteriors of the line strength and
center frequency to compare with our previous results. In Section 12.7, we will employ
parallel tempering to compute the Bayes factor needed for model comparison.

Metropolis—Hastings results

In this section, we will draw samples from p(X|D, M, I), where X is a vector repre-
senting the two parameters of model M, namely the line strength 7'and the line center
frequency v expressed as channel number. We use a Jeffreys prior for T'in the range
Tmin = 0.1mK to Tax = 100mK. We assume a uniform prior for v in the range
channel 1 to 44. The steps in the calculation are as follows:

1. Initialize Xp; set t = 0.
In this example we set Xo = {Tp = 5, = 30}
2. Repeat {

a) Obtain a new sample Y from ¢(Y|X,)
Y={T, v}
we set (7| T,;) = Random[NormalDistribution[ T,,0 7 = 1.0]]
and q(v'|v,) = Random[NormalDistribution[v,, ;= 1.0]]

b) Compute the Metropolis ratio

r= p(Y|D:M1:I) :p(T’,VllM],I) p(DlM], T!:V':I)
p(X-'lD:MI:I) p(Tf: V-'lMlaI) p(DlM], T-':V-':I)

where p(D|M,, T,v,1) is given by Equations (3.44) and (3.41).
The priors p( T, v|M1,I) = p(T|M,,I) p(v|M,,I) are given by Equations (3.38)
and (3.33).
Note: if T’ or ¢/ lie outside the prior boundaries set r = 0.
¢) Acceptance/rejection: U ~ U(0,1)
d) Accept Xy = Yif U <r, otherwise set X, = X;
e) Increment ¢}

Figure 12.5 shows results for 10° iterations of a Metropolis—Hastings Markov chain
Monte Carlo. Panel (a) shows every 50th value of parameter v/, expressed as a channel
number, and panel (c) the same for parameter 7. It is clear that the v values move
quickly to a region centered on channel 37 with occasional jumps to a region centered
on channel 24 and only one jump to small channel numbers. The T parameter can be
seen to fluctuate between 0.1 and ~3.5mK. Panels (b) and (d) show a blow-up of the
first 500 iterations. It is apparent from these panels that the burn-in period is very
short, < 50 iterations for a starting state of 7= 5 and v = 30.

Figure 12.6 shows distributions of the two parameters. In panel (a), the joint
distribution of T"and v is apparent from the scatter plot of every 20th iteration obtained
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Figure 12.5 Results for 10° iterations of a Metropolis—Hastings Markov chain Monte Carlo.
Panel (a) shows every 50th value of parameter v and panel (c) the same for parameter 7. Panels
(b) and (d) show a blow-up of the first 500 iterations.

after dropping the burn-in period consisting of the first 50 iterations. To obtain the
marginal posterior density for the » parameter, we simply plot a histogram of all the »
values (post burn-in) normalized by dividing by the sum of the v values multiplied by
the width of each bin. This is shown plotted in panel (b) together with our earlier
marginal distribution (solid curve) computed by numerical integration. It is clear that
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Figure 12.6 Results for the spectral line problem using a Metropolis—Hastings Markov chain
Monte Carlo analysis. Panel (a) is a scatter plot of the result for every 20th iteration in the two
model parameters, channel number and line strength 7. Panel (b) shows the marginal prob-
ability density for channel number (points) compared to our earlier numerical integration result
indicated by the solid curve. Panel (c) shows the marginal probability density for line strength T
(points) compared to our earlier numerical integration result indicated by the solid curve.

10° iterations of Metropolis—Hastings does a good job of defining the dominant peak of
the probability distribution for » but does a poor job of capturing two other widely
separated islands containing significant probability. On the other hand, it is clear from
panel (c) that it has done a great job of defining the distribution of 7.

Parallel tempering results

We also analyzed the spectral line data with a parallel tempering (PT) version of
MCMC described in Section 12.5. We used five values for the tempering parameter, 3,
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uniformly spaced between 0.01 and 1.0, and ran all five chains in parallel. At intervals
(on average every 50 iterations) a pair of adjacent simulations on this ladder are
chosen at random and a proposal made to swap their parameter states. We used the
same starting state of 7= 5, v = 30 and executed 10° iterations. The final results for
the 8 = 1, corresponding to the target distribution, are shown in Figures 12.7 and
12.8. The acceptance rate for this simulation was 37%.

Comparing panel (a) of Figures 12.7 and 12.5, we see that the PT version visits
the two low-lying regions of » probability much more frequently than the
Metropolis—Hastings version. Comparing the marginal densities of Figures 12.8 and
12.6 we see that the PT marginal density for v is in better agreement with the expected
results indicated by the solid curves. For both versions, the marginal densities for T"are
in excellent agreement with the expected result. In more complicated problems, we often
cannot conveniently compute the marginal densities by another method. In this case, it
is useful to compare the results from a number of PT simulations with different starting
parameter states.

12.7 Model comparison

So far we have demonstrated how to use MCMC to compute the marginal posteriors
for model parameters. In this section, we will show how to use the results of parallel
tempering to compute the Bayes factor used in model comparison (Skilling, 1998;
Goggans and Chi, 2004). In the toy spectral line problem of Section 3.6, we were
interested in computing the odds ratio of two models M, and M, which from
Equation (3.30) is equal to the prior odds times the Bayes factor given by

= DL 1) 12.13)

where p(D|M,I) and p(D|M>, I) are the global likelihoods for the two models. In the
version of this problem analyzed in Section 12.6, M| has two parameters v and 7. For
independent priors,

p(D|M,, 1) :/dVP(V|M1,I)/dTP(ﬂMl,I)P(li,V, T.I). (12.14)

In what follows, we will generalize the model parameter set to an arbitrary number of
parameters which we represent by the vector X.

Toevaluate p(D|M,, I), using parallel tempering MCMC, we first define a partition
function

Z(8)= / dX p(X|My, 1) p(D|M;, X, I)’
(12.15)

- / dX exp{In[p(X|M,, D] + B1n[ p(D|My, X, I},
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Figure 12.7 Results for 10° iterations of a parallel tempering Markov chain Monte Carlo. Panel
(a) shows every 50th value of parameter v and panel (c) the same for parameter T. Panels (b) and
(d) show a blow-up of the first 500 iterations.

where 3 is the tempering parameter introduced in Section 12.4. Now take the deriva-
tive of In[Z(3)].

< 1nz(8)] = =L Z(5) (12.16)

dp
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Figure 12.8 Results for the spectral line problem using a Markov chain Monte Carlo analysis
with parallel tempering. Panel (a) is a scatter plot of the result for every 20th iteration in the two
model parameters, channel number and line strength 7. Panel (b) shows the marginal prob-
ability density for channel number (points) compared to our earlier numerical integration result
indicated by the solid line. Panel (c) shows the marginal probability density for line strength T
(points) compared to our earlier numerical integration result indicated by the solid line.

d

d_ﬂz(,@) :/Xmn[p(D|M|;X: 1)

x exp{In[p(X| My, 1)) + B1n[ p(D|My, X, ]} (12.17)
- / dXn[p(D|My, X, 1)] p(X|My, 1) p(D|My, X, T)’.
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Substituting Equation (12.17) into Equation (12.16), we obtain

4 1hiz(p) = LXnlp(DIMy, X, D] p(X|M, D) p(DIMy, X, 1?
@ Jdx p(X|My, 1) p(D|M,, X, 1)’ (12.18)

= (In[p(D|M\, X, I)]) 4,

where (In[p(D|Mi,X,1)]); is the expectation value of the In[p(D|M, X, I)]. This
quantity is easily evaluated from the MCMC results which consist of sets of X;
samples, one set for each value of the tempering parameter 3. Let {X, g} represent
the samples for tempering parameter .

(n[p(DIML, X, D))y = 7 Inlp(DIM1, Xi5, 1), (12.19)

where 7 is the number of samples in each set after the burn-in period. From Equation
(12.18) we can write

A dIn[Z(B)] = n[Z(1)] - In[Z(0)]

(12.20)
~ [ as mlp(oinn, X, 1),
Now from Equation (12.15)
2(1)= [ dx p(xIM, 1) (DI X, 1) = p(DIM, ), (1221)
and
Z(0) = /pr(X]M,,I). (12.22)
From Equations (12.20) and (12.21) we can write
In[p(D| M1, )] = In[Z(0)] + / dB(n[p(D|My, X, T))) . (12.23)
For a normalized prior, Z(0) = 1 and Equation (12.23) becomes
in{p(DIMy, D] = [ dB(inlp(DIM, X, D), (12.24)

Armed with Equation (12.24) we are now in a position to evaluate the Bayes factor
given by Equation (12.13), which is at the heart of model comparison.
Returning to the spectral line problem,

(ln[p(DlMl s Vs T} I)]}[-I = %Z ln[p(DlMl » Vi3 Tf‘[‘f: I)] (1225)
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We evaluated Equation (12.25) for the five values of 3 = 0.01, 0.2575, 0.505, 0.7525,
1.0 used in the PT MCMC analysis of Section 12.6. The results were
—97.51, -87.1937, —86.4973, —85.9128, —85.1565, respectively. We then evaluated
the integral in Equation (12.24) by generating an interpolating function and integrating
the interpolating function in the interval 0 to 1. This yielded In[p(D| M, I)] = —87.4462.
A more sophisticated interpolation of the results yielded In[p(D|M,,I)] = —87.3369.
Model M, had no free parameters and p(D|M>,I) = 1.133 x 10~ from Equation
(3.49). The resulting Bayes factors for the two interpolations were B> = 0.93 and
1.04, respectively. This should be compared to B;, = 1.06 obtained from our earlier
solution to this problem.

12.8 Towards an automated MCMC

As the number of model parameters increases, so does the time required to choose a
suitable o value for each of the parameter proposal distributions. Suitable means that
MCMC solutions, starting from different locations in the prior parameter space, yield
equilibrium distributions of model parameter values that are not significantly different,
in an acceptable number of iterations. Generally this involves running a series of
chains, each time varying o for one or more of the parameter proposal distributions,
until the chain appears to converge on an equilibrium distribution with a proposal
acceptance rate, A, that is reasonable for the number of parameters involved, e.g.,
approximately 25% for a large number of parameters (Roberts, Gelman, and Gilks,
1997). This is especially time consuming if each parameter corresponds to a different
physical quantity, so that the o values can be very different. In this section, we describe
one attempt at automating this process, which we apply to the detection of an
extrasolar planet using some real astronomical data.

Suppose we are dealing with M parameters that are represented collectively by
{X,}. Let o, represent the characteristic width of a symmetric proposal distribution
for X,,. We will assume Gaussian proposal distributions but the general approach
should also be applicable to other forms of proposal distributions. To automate the
MCMC, we need to incorporate a control system that makes use of some form of error
signal to steer the selection of the {7,}.

For a manually controlled MCMC, a useful approach is to start with a large value
of o,, approximately one tenth of the prior uncertainty of that parameter. In a PT
MCMC, this will normally be sufficient to provide access to all areas with significant
probability within the prior range, but may result in a very small acceptance rate for
the 8 = 1 member of the PT MCMC chain. By running a number of smaller iteration
chains, each time perturbing one or more of the {¢,}, it soon becomes clear which
parameters are restraining the acceptance rate from a more desirable level. Larger
{oa} values yield larger jumps in parameter proposal values. The general approach of
refining the {a, } towards smaller values is analogous to an annealing operation. The
refinement is terminated when the target proposal acceptance rate is reached.
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In the automated version of this process described below, the error signal used for the
control system is the difference between the current acceptance rate and a target
acceptance rate. The control system steers the proposal o’s to desirable values during
the burn-in stage of a single parallel tempering MCMC run. Although inclusion of the
control system may resultin a somewhat longer burn-in period, there is a huge savingin
time becauseit eliminates many trial runs to manually establish a suitable set of {7, }. In
addition the control system error monitor provides another indication of the length of
the burn-in period. In practice, it is important to repeat the operation for a few different
choices of initial parameter values, to ensure that the MCMC results converge.

The automatic parallel tempering MCMC (APT MCMC) algorithm contains major
and minor cycles. During the major cycles the current set of {¢,} are used for n,
iterations. The acceptance rate achieved during this major cycle is compared to the
target acceptance rate. If the difference (control system error signal), ¢, is greater than
a chosen threshold, tol;, then a set of minor cycles, one cycle of », iterations for each
o, are employed to explore the sensitivity of the acceptance rate to each a,. The {0, }
are updated and another major cycle run. If tol; is set = 0, then the minor cycles are
always performed after each major cycle. At this point, the reader might find it useful
to examine the evolution of the error signal, and the {o,}, for the examples shown in
Figures 12.12 and 12.13. One can clearly see the expected Poisson fluctuations in the
error signal after the {0, } stabilize. For these examples we set tol; = 1.5y/An; to reduce
the number of minor cycles. Normally the control system is turned off after € is less
than some threshold, tol,. Typically tol, = /An.

Full details of the control system are not included here as it is considered experi-
mental and in a process of evolution. The latest version is included in the Mathematica
tutorial in the section entitled “Automatic parallel tempering MCMC,” along with
useful default values for the algorithm parameters and input data format. Figure 12.9
provides a summary of the inputs and outputs for the APT MCMC algorithm. In the
following section we demonstrate the behavior of the algorithm with a set of astro-
nomical data used to detect an extrasolar planet.

12.9 Extrasolar planet example

In this section, we will apply the automated parallel tempering MCMC described
in Section 12.8 to some real astronomical data, which were used to discover (Tinney
et al., 2003) an extrasolar planet orbiting a star with a catalog number HD 2039.
Although light from the planet is too faint to be detected, the gravitational tug of the
planet on the star is sufficient to produce a measurable Doppler shift in the velocity of
absorption lines in the star’s spectrum. By fitting a Keplerian orbit to the measured
radial velocity data, v;, it is possible to obtain information about the orbit and a lower
limit on the mass of the unseen planet. The predicted model radial velocity, f;, for a
particular orbit is given below, and involves six unknowns. The geometry of a stellar
orbit with respect to the observer is shown in Figure 12.10. The points labeled F, P,
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Figure 12.9 An overview schematic of the inputs and outputs for the automated parallel
tempering MCMC.

and S, are the location of the focus of the elliptical orbit, periastron, and the star’s
position at time ¢;, respectively.

fi =V + K[cos{0(t; + to) +w} + ecosw], (12.26)

where

V = the systematic velocity of the system.
K = velocity amplitude = 2nP~!(1 — ¢2)~'/2
P = the orbital period.

a = the semi-major axis of the orbit.

e = the eccentricity of the elliptical orbit.

i = the inclination of the orbit as defined in Figure 12.10.

w = the longitude of periastron, angle LFA in Figure 12.10.

x = the fraction of an orbit prior to the start of data-taking that periastron occurred
at. Thus, #p = xP = the number of days prior to t; = 0 that the star was at periastron,
for an orbital period of P days. At ¢; = 0, the star is at an angle AFB from periastron.
0(t; + ty) = the angle (AFS) of the star in its orbit relative to periastron at time ¢;.

asini.

The dependence of @ on ¢;, which follows from the conservation of angular momen-
tum, is given by the solution of
do  2n[1 +ecosB(t; + to)]

- 1 _e” =0. (12.27)
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Figure 12.10 The geometry of a stellar orbit with respect to the observer. The sky plane is
perpendicular to the dashed line connecting the star and the observer.

To fit Equation (12.26) to the data, we need to specify the six model parameters,
P, K V,ew,x.

The measured radial velocities and their errors are shown Figure 12.11. As we have
discussed before, it is good idea not to assume that the quoted measurement errors are
the only error component in the data.
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Figure 12.11 HD 2039 radial velocity measurements plotted from the data given in Tinney ez al.,
(2003).
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We can represent the measured velocities by the equation
v =fi + e (12.28)

where e; is the component of v; which arises from measurement errors plus any real signal
in the data that cannot be explained by the model prediction f;. For example, suppose
that the star actually has two planets, and the model assumes only one is present. In
regard to the single planet model, the velocity variations induced by the second planet act
like an additional unknown noise term. In the absence of detailed knowledge of the
effective noise distribution, other than that it has a finite variance, the maximum entropy
principle tells us that a Gaussian distribution would be the most conservative choice (i.e.,
maximally non-committal about the information we don’t have). We will assume the
noise variance is finite and adopt a Gaussian distribution for ¢; with a variance o?2.

In a Bayesian analysis where the variance of e; is unknown, but assumed to be the
same for all data points, we can treat ¢ as an unknown nuisance parameter.
Marginalizing over ¢ has the desirable effect of treating anything in the data that
can’t be explained by the model as noise and this leads to the most conservative
estimates of model parameters.

In the current problem, the quoted measurement errors are not all the same. We let
s; = the experimenter’s estimate of o;, prior to fitting the model and examining the
model residuals. The o; values are not known, but the s; values are our best initial
estimates. They also contain information on the relative weight we want to associate
with each point. Since we do not know the absolute values of the o;, we introduce a
parameter called the noise scale parameter, b, to allow for this.” It could also be called
a noise weight parameter. Several different definitions of b are possible including
o7 = bs? and o; = bs;. The definition we use here is given by

b
= (12.29)

Again marginalizing over b has the desirable effect of treating anything in the data
that can’t be explained by the model as noise, leading to the most conservative
estimates of orbital parameters. Since b is a scale parameter, we assume a Jeffreys
prior (see Section 3.10).

* Note added in proof:
A better choice for parameterizing any additional unknown noise term is to rewrite equation (12.28) as

v =fi+eit+e

where ¢; is the noise component arising from known but unequal measurement errors, and ey is the additional unknown
noise term. From the arguments given above, we can characterize the combination of & + ey by a Gaussian distribution
with variance = o7 +o3. With this form of parameterization we would marginalize over o, instead of 5. The one
advantage of using b is that it can allow for the possibility that the measurement errors have been overestimated.
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1
p(blD) = Tt (12.30)

bmm

with bpax = 2 and bpin = 0.1. We also compute p(b|D, Model, I). If the most probable
estimate of b & 1, then the one-planet model is doing a good job accounting for everything
that is not noise based on the s; estimates. If & < 1, then either the modelis not accounting
for significant real features in the data or the initial noise estimates, s;, were low.

12.9.1 Model probabilities

In this section, we set up the equations needed to (a) specify the joint posterior probability
of the model parameters (parameter estimation problem) for use in the MCMC analysis,
and (b) decide if a planet has been detected (model selection problem). To decide if a
planet has been detected, we will compare the probability of M, = “the star’s radial
velocity variations are caused by one planet” to the probability of M, = “the radial
velocity variations are consistent with noise.” From Bayes’ theorem, we can write

p(ano,n = LD EID _ ¢ pian, | p(oiams, 1), (1231)

where

p(D|M1,I)Z/dP/dK/dV/de/dx/dw/dbP(P}K;V}-‘-’,X}w,b|M1,1) (12.32)

xp(D|M,,P.K,V,e,x,wb.I).
The joint prior for the model parameters, assuming independence, is given by

1 1 1
Pln (‘;’,ﬁ) Kln (KA) (Vimax — Vimin)

p(P:K: V,e,x,w,b|M1,I) =
1 1 1
€max — €min 2 by .

(12.33)
x

Note: we have assumed a uniform prior for y in the range 0 to 1, so p(x|M,I) = 1.

N 2
p(D|M1,P,K, V,e,x,w,b,I) = AB™* x exp l-gz%] , (12.34)

where

N
(2m)~N/? lH ] (12.35)
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For the purposes of estimating the model parameters, we will assume a prior uncer-
tainty in b in the range byin = 0.1 and bpax = 2.

When it comes to comparing the probability of M; to My, or to a model which
assumes there are two planets present, we will set » =1 and perform the model
comparison based on the errors quoted in Tinney et al., (2003). The probability of
M, is given by

p(Mo|D, 1) = C p(My|I)p(D| Mo, I), (12.36)
where
p(DlMO}I) :/db/de(V}le}MO}I)
(12.37)
= [ @ [ av p(v.6iMo. D p(DIMo, V.,
(V|Mo, 1) = l l (12.38)
P 0 (Vm,ax — me) bln(%?::,) 3 .
and

(D|My, V,b, 1) = (21) N/ ﬁ b ex -QZN:M (12.39)
p 0, V.t P p 2 — S;-Z " "
The integral over ¥ in Equation (12.37) can be performed analytically yielding

— A Eg12 — _bw 5 Z — ()22
p(D|M@,I)—A\£W“ /dbb expl 5 (% — (W) )] (12.40)

i=1

X [erf(umax) — erf(umin )],

where
N
To= Y wi v, (12.41)
i=1
_ N
2= wil, (12.42)
i=1
w; = 1/s2, (12.43)

N
W = th (l 244)
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bW ~1/2
Umax = (TW) (Vmax — V), (12.45)

b —1/2
o = (53) (Vi =0 (1246)

In conclusion, Equations (12.31) and (12.34) are required for the parameter estima-
tion part of the problem, and Equations (12.32)and (12.40) answer the model selection
part of the problem. Equation (12.32) is evaluated from the results of the parallel
tempering chains according to the method discussed in Section 12.7.

12.9.2 Results

The APT MCMC algorithm described in Section 12.8 was used to re-analyze the
measurements of Tinney et al. (2003). Figures 12.12 and 12.13 show the diagnostic
information output by the MCMC control system for two runs of the APT MCMC
algorithm that use different starting values for the parameters and different starting
values for the proposal ¢’s. The top left panel shows the evolution of the control
system error for 100 000 iterations. Even for the best set of {o,}, the control system
error will exhibit statistical fluctuations of order v/An; which will result in fluctuations
of {o,} throughout the run. Recall, A = the target acceptance fraction and n; = the
number of iterations in major cycles (see Section 12.8). These fluctuations are of no
consequence since the equilibrium distribution of parameter values is insensitive to
small fluctuations in { o, }. To reduce the time spent in perturbing { s, } values, we set a
threshold on the control system error of 1.5y/An;. When the error is less than this value
no minor cycles are executed. Normally, the control system is disabled the first time
the error is <1.5\/An;. This was not done in the two examples shown in order to
illustrate the behavior of the control system and evolution of the {5, }. For the two
runs, the error drops to a level consistent with the minimum threshold set for initiating
a changein {o,} in 8000 and 9600 iterations, respectively. The other six panels exhibit
the evolution of the {7, } to relatively stable values. Table 12.1 compares the starting
and final values for two APT MCMC runs with a set of {o, } values arrived at manually.
The starting parameter values for the two APT MCMC runs are shown in Table 12.2.
Control system parameters were: SCmax = 0.1, 1y = 1000, 7o =100, A=0.25, and a
damping factor, v = 1.6. scpax specifies the maximum scaling of {o,} to be used in a
minor cycle. Tempering 3 values used were {0.01,0.2575,0.505,0.7525, 1}. 3 values are
chosen to give ~50% swap acceptance between adjacent levels.

Figure 12.14 shows the iterations of the six model parameters, P, K, V, e, x,w, for
the 100 000 iterations of APT MCMC 1. Only every 100th value is plotted. The plot for
K shows clear evidence that parallel tempering is doing its job, enabling regions of
significant probability to be explored apart from the biggest peak region. A conser-
vative burn-in period of 8000 samples was arrived at from an examination of the



338 Markov chain Monte Carlo

50 * e +%. = . 80
0
L [ 1) L
_50 ... . g .o > . 60
§ —100 * aé 40
u
-150
20
—200
—250 e
20000 40000 60000 80000 0 20000 40000 60000 80000
Iteration Iteration
80
20
60
f - 15
b
40 10
20 5
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Iteration Iteration
0.175 0.175
0.15 0.15
0.125 0.125
g 01 g 04
0.075 0.075
0.05 0.05
0.025 0.025
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Iteration Iteration
0.35
0.3
0.25
E 0.2
0.15
0.1
0.05

0 20000 40000 60000 80000
Iteration

Figure 12.12 The upper left panel shows the evolution of the APT MCMC control system error
versus iteration number for the first run. The other six panels exhibit the evolution of the
Gaussian parameter proposal distribution ¢’s.

control system error, shown in the upper left panel of Figure 12.12, and the parameter
iterations of Figure 12.14.

The level of agreement between two different MCMC runs can be judged from a
comparison of the marginal distributions of the parameters. Figures 12.15 and 12.16
show the posterior marginals for the six model parameters, P, K, V, e, x,w, and the noise
scale parameter b for APT MCMC 1 and APT MCMC 2, respectively. The final model
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Figure 12.13 The upper left panel shows the evolution of the APT MCMC control system error
versus iteration number for the second run. The other six panels exhibit the evolution of the

Gaussian parameter proposal distribution ¢’s.

parameter values are given in Table 12.3, along with values of asini, Msini, and the
Julian date of periastron passage, that were derived from the parameter values.

asini(km) = 1.38 x 10°KPV'1 — €2,

where K is in units of m s~! and P is in days.

Msini =4.91 x 1073 (M.)PKP'*V1 - &2,

(12.47)

(12.48)
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Table 12.1 Comparison of the starting and final values of proposal distribution o’s for
two automatic parallel tempering MCMC runs, to manually derived values.

Proposal APT MCMC 1 APT MCMC 2 Manual
o

Start Final Start Final Final
oP (days) 70 6.2 50 7.8 10
oK(m s7!) 70 5.7 60 6.0 5
oV(ms™) 20 1.5 10 1.2 2
oe 0.15 0.012 0.1 0.012 0.005
ox 0.15 0.013 0.1 0.009 0.007
ow 0.3 0.023 0.2 0.019 0.05

Table 12.2 Starting parameter values for the two automatic parallel tempering MCMC

runs.
Trial P K V e X w b
1 950 80 -2 0.4 0.0 0.0 1.0
2 1300 250 5 0.2 0.0 0.0 1.0

where M is the mass of the planet measured in Jupiter masses, and M- is the mass of
the star in units of solar masses.

One important issue concerns what summary statistic to use to represent the best
estimate of the parameter values. We explore the question of a suitable robust summary
statistic further in Section 12.10. In Table 12.3, the final quoted parameter values
correspond to the MAP values. The median values are shown in brackets below. The
error bars correspond to the boundaries of the 68.3% credible region of the marginal
distribution. The MAP parameter values for APT MCMC 1 were used to construct the
model plotted in panel (a) of Figure 12.17. The residuals are shown in panel (b).

Figure 12.18 shows the posterior probability distributions for a sin i, M sin i, and the
Julian date of periastron passage, that are derived from the MCMC samples of the
orbital parameters.

The Bayes factors, p(D|M,,I)/p(D|My, I), determined from the two APT MCMC
runs were 1.4 x 10'* and 1.6 x 10'*. Clearly, both trials overwhelmingly favor M,
over M.

The upper panel of Figure 12.19 shows a comparison of the marginal and projected
probability density functions for the velocity amplitude, K, derived from the APT
MCMC parameter samples. To understand the difference, it is useful to examine the
strong correlation that is evident between K and orbital eccentricity in the lower panel.
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Figure 12.14 The figure shows every 100th APT MCMC iteration of the six model parameters,
P KV ex,w.

Not only is the density of samples much higher at low K values, but the characteristic
width of the K sample distribution is also much broader, giving rise to an enhancement
in the marginal beyond that seen in the projected.

Finally, even though the 68.3% credible region contains b =1, we decided to
analyze the best-fit residuals, shown in the lower panel of Figure 12.17, to see what
probability theory had to say about the evidence for another planet.” The APT
MCMC program was re-run on the residuals to look for evidence of a second planet
in the period range 2 to 500 days, K=1to 40m s~!, V= —10to 10m s~', e =0 to
0.95,x = 0to 1, and w = —n to n. The most probable orbital solution had a period of
11.90 £ 0.02days, K=18".ms~!, V= -2.77¢m s™!, eccentricity = 0.62670 1,
w=156*;deg, periastron passage = 1121+ 1days (JD-2,450,000), and an
Msini = 0.147)97. Figure 12.20 shows this orbital solution overlaid on the residuals
for two cycles of phase. Note: the second cycle is just a repeat of the first. The
computed Bayes factor p(D|M,I)/p(D|M;,I)=0.7. Assuming a priori that

4 Note: a better approach would be to fit a two-planet model to the original radial velocity data.
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Figure 12.15 The marginal probabilities for the six model parameters, P, K, V, ¢, x,w, and the
noise scale parameter b for the run APT MCMC 1.

p(M3|I) = p(M,|I), this result indicates that it is more probable that the orbital
solution for the residuals arises from fitting a noise feature than from the existence
of a second planet. Thus, there is insufficient evidence at this time to claim the presence
of a second planet.

12.10 MCMC robust summary statistic

In the previous section, the best estimate of each model parameter is based on the
maximum a posteriori (MAP) value. It has been argued, e.g., Fox and Nicholls (2001),
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Figure 12.16 The marginal probabilities for the six model parameters, P, K, V, e, x, w, and the
noise scale parameter b for the run APT MCMC 2.

that MAP values are sometimes unrepresentative of the bulk of the posterior prob-
ability. Fox and Nicholls were considering the reconstruction of degraded binary
images. The current problem is very different but the issue remains the same: what
choice of summary statistic to use? Two desirable properties are: a) that it be repre-
sentative of the marginal probability distribution, and b) the set of summary parameter
values provides a good fit to the data. Here, we consider three other possible choices of
summary statistic. They are the mean, the median, and the marginal posterior mode
(MPM), all of which satisfy point (a). In repeated APT MCMC runs, it was found that



344 Markov chain Monte Carlo

Table 12.3 Comparison of the results from two parallel tempering MCMC Bayesian runs
with the analysis of Tinney et al. (2003 ). The values quoted for the two APT MCMC runs
are M AP (maximum a posterior) values. The error bars correspond to the boundaries of
the 68.3% credible region of the marginal distribution. The median values are given in
brackets on the line below. Note: the periastron time and error quoted by Tinney et al. is
identical with their P value and is assumed to be a typographical error.

Parameter Tinney et al. APT MCMC APT MCMC
(2003) 1 2
Orbital period 1183 £150 1188138 117738
P (days) (1188) (1188)
Velocity amplitude 130 £20 10613 116135
K (ms™) (115) (125)
Eccentricity e 0.67 0.1 0.637922 0.65922
(0.67) (0.68)
Longitude of periastron 333+ 15 333*¢ 33218
w (deg) (334) (334)
asini 1.56 £0.3 135704 14704
(units of 106 km) (1.42) (1.66)
Periastron time 1183 £+ 150 864718 856752
(JD —2,450,000) (845) (844)
Systematic velocity —0.7*% 1477
V (ms™!) (0.8) (2.1)
Msini (Mj) 49+1.0 4242 4513
@.5) (4.7)
RMS about fit 15 13.8 14.0
(14.1) (14.0)

the MPM solution provided a relatively poor fit to the data, while the mean was
somewhat better, and in all cases, the median provided a good fit — almost as good as
the MAP fits. One example of the fits is shown in Figure 12.21. The residuals were as
follows: (a) 14.0m s~! (MAP), (b) 16.1 (mean), (c) 18.7 (MPM), and (d) 14.0 (median).

In the previous example the Bayes factor favored the one-planet model, M,
compared to the no-planet model, My, by a factor of approximately 10'. It is also
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Figure 12.17 Panel (a) shows the raw data with error bars plotted together with the model radial
velocity curve using the MAP (maximum a posteriori) summary statistic. Panel (b) shows the
radial velocity residuals.

interesting to compare the four different summary statistics in the case where the
Bayes factor is close to 1, as we found for the toy spectral line problem in Section 12.7,
i.e., neither model is preferred. Figure 12.22 shows a comparison of the fits obtained
using (a) the MAP, (b) the mean, (c) the MPM, and (d) the median. Both the MAP and
median summary statistic placed the model line at the actual location of the simulated
spectral line (channel 37). The MAP achieved a slightly lower RMS residual
(RMS = 0.87) compared to the median (RMS = 0.89). The mean statistic performed
rather poorly and the MPM not much better.

The conclusion, based on the current studies, is that the median statistic provides a
robust alternative to the common MAP statistic for summarizing the posterior dis-
tribution. Unfortunately, the median was not one of the statistics considered in Fox
and Nicholls (2001).
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Figure 12.18 The figure shows the distribution of three useful astronomical quantities; @ sini,
M sin i and epoch of periastron passage, that are derived from the MCMC samples of the orbital
parameters.

12.11 Summary

This chapter provides a brief introduction to the powerful role MCMC methods can
play in a full Bayesian analysis of a complex inference problem involving models with
large numbers of parameters. We have only demonstrated their use for models with a
small to a moderate number of parameters, where they can easily be compared with
results from other methods. These comparisons will provide a useful introduction and
calibration of these methods for readers wishing to handle more complex problems.
For the examples considered, the median statistic proved to be a robust alternative to
the common MAP statistic for summarizing the MCMC posterior distribution.

The most ambitious topic treated in this chapter dealt with an experimental new
algorithm for automatically annealing the ¢ values for the parameter proposal dis-
tributions in a parallel tempering Markov chain Monte Carlo (APT MCMC) calcula-
tion. This was applied to the analysis of a set of astronomical data used in the detection
of an extrasolar planet. Existing analyses are based on the use of nonlinear least-
squares methods which typically require a good initial guess of the parameter values
(see Section 11.5). Frequently, the first indication of a periodic signal comes from a
periodogram analysis of the data. As we show in the next chapter, a Bayesian analysis
based on prior information of the shape of the periodic signal can frequently do a
better job of detection than the ordinary Fourier power spectrum, otherwise known as
the Schuster periodogram. In the extrasolar planet Kepler problem, the mathematical
form of the signal is well known and is built into the Bayesian analysis. The APT
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Figure 12.20 The figure shows the most probable orbital solution to the data residuals (for two
cycles of phase), after removing the best fitting model of the first planet.
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Figure 12.21 The four panels illustrate typical fits obtained in the extrasolar planet problem
using different choices of summary statistic to represent the MCMC parameter distributions.
They correspond to: (a) the MAP (maximum a posteriori), (b) the mean, (c) the MPM (marginal

posterior mode), and (d) the median.
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Figure 12.22 The four panels illustrate the fits obtained in the toy spectral line problem using
different choices of summary statistic to represent the MCMC parameter distributions. They
correspond to: (a) the MAP (maximum a posteriori), (b) the mean, (c) the MPM (marginal
posterior mode), and (d) the median.
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MCMC algorithm implemented in Section 12.9 is thus effective for both detecting and
characterizing the orbits of extrasolar planets. Another advantage is that a good initial
guess of the orbital parameter values is not required, which allows for the earliest
possible detection of a new planet. Moreover, the built-in Occam’s razor in the
Bayesian analysis can save a great deal of time in deciding whether a detection is
believable.

Finally, it is important to remember that the MCMC techniques described in this
chapter are basically tools to allow us to evaluate the integrals needed for a full
Bayesian analysis of some problem of interest. The APT MCMC algorithm discussed
in the context of the extrasolar planet problem can readily be modified to tackle other
very different problems.

12.12 Problems

1. In Section 12.6, we used both the Metropolis—Hastings and parallel tempering (PT) versions
of MCMC to re-analyze the toy spectral line problem of Section 3.6. A program to perform
the PT calculations is given in the Markov chain Monte Carlo section of the Mathematica
tutorial. Use this program to analyze the spectrum given in Table 12.4, for n = 10000 to
50000 iterations, depending on the speed of your computer. As part of your solution,
recompute Figures 12.7, 12.8, and the Bayes factor used to compare the two competing
models. Explain how you arrived at your choice for the number of burn-in samples.

The prior information is the same as that assumed in Section 12.6. Theory predicts the
spectral line has a Gaussian shape with a line width o; = 2 frequency channels. The noise in
each channel is known to be Gaussian with a ¢ = 1.0mK and the spectrometer output is in
units of mK.

2. Repeat the analysis of problem 1 with the following changes. In addition to the unknown line
strength and center frequency, the line width is also uncertain. Assume a uniform prior for
the line width, with upper and lower bounds of 0.5 and 4 frequency channels, respectively.
Y ou will need to modify the parallel tempering MCMC program to allow for the addition of
the line width parameter. Experiment with your choice of o, for the line width in the Gaussian
proposal distribution, to obtain a reasonable value for the acceptance rate somewhere in the
range 0.25 to 0.5. Your solution should include a plot of the marginal probability distribution
for each of the three parameters and a calculation of the Bayes factor for comparing the two
models. Justify your choice for the number of burn-in samples.

3. Carry out the analysis described in problem 2 by modifying the experimental APT MCMC
software provided in the Mathematica tutorial, and discussed in Section 12.8.

4. In Section 11.6, we illustrated the solution of a simple nonlinear model fitting problem using
Mathematica’s NonlinearRegress, which implements the Levenberg-Marquardt method. In
this problem we want to analyze the same spectral line data (Table 12.5) using the experi-
mental APT MCMC software given in the Mathematica tutorial and discussed in Section
12.8. Tt will yield a fully Bayesian solution to the problem without the need to assume the
asymptotic normal approximation, or to assume the Laplacian approximations for comput-
ing the Bayes factor and marginals. In general, MCMC solutions come into their own for
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Table 12.4 Spectral line data consisting of 64 frequency channels obtained with a radio
astronomy spectrometer. The output voltage from each channel has been calibrated in
units of effective black body temperature expressed in mK. The existence of negative
values arises from receiver channel noise which gives rise to both positive and negative

Sfluctuations.
ch. # mK ch. # mK ch. # mK ch. # mK
1 0.82 17 —0.90 33 —0.03 49 —0.72
2 —2.07 18 0.33 34 1.47 50 0.38
3 0.38 19 0.80 35 1.70 51 0.02
4 0.99 20 —1.42 36 1.89 52 —1.26
5 —0.12 21 0.28 37 4.55 53 1.35
6 —1.35 22 —0.42 38 3.59 54 —0.04
7 —0.20 23 0.12 39 2.02 55 —1.45
8 0.36 24 0.14 40 0.21 56 1.48
9 0.78 25 —0.63 41 0.05 57 —1.16
10 1.01 26 -1.77 42 0.54 58 —0.40
11 0.44 27 —0.67 43 —0.09 59 0.01
12 0.34 28 0.55 44 —0.61 60 0.29
13 1.58 29 1.98 45 2.49 61 —1.35
14 0.08 30 —0.08 46 0.07 62 —0.21
15 0.38 31 1.16 47 —1.45 63 —1.67
16 —0.71 32 0.48 48 0.56 64 0.70

Table 12.5 Spectral line data consisting of 51 pairs of frequency and signal strength
(mK) measurements.

f mK f mK f mK f mK
0.00 0.86 1.56 0.97 3.12 1.95 4.68 1.39
0.12 1.08 1.68 0.97 3.24 1.75 4.80 0.64
0.24 0.70 1.80 1.06 3.36 2.03 4.92 0.79
0.36 1.16 1.92 0.85 3.48 1.42 5.04 1.27
0.48 0.98 2.04 1.94 3.60 1.06 5.16 1.17
0.60 1.32 2.16 2.34 3.72 0.79 5.28 1.23
0.72 1.05 2.28 3.55 3.84 1.11 5.40 1.23
0.84 1.17 2.40 3.53 3.96 0.88 5.52 0.71
0.96 0.96 2.52 4.11 4.08 0.88 5.64 0.71
1.08 0.86 2.64 3.72 4.20 0.68 5.76 0.80
1.20 1.12 2.76 3.52 4.32 1.39 5.88 1.16
1.32 0.79 2.88 2.78 4.44 0.62 6.00 1.12

1.44 0.86 3.00 3.03 4.56 0.80
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higher dimensional problems but it is desirable to gain experience working with simpler
problems.
Modify the APT MCMC software to analyze these data for the two models described in
Section 11.6.
In Mathematica, model 1 has the form:

model[a0_, al_, f1_]: = a0 + al line[ f1]

where

- - . sin|2rl/—f1)/A -
line[f1_] := 20/ and Af=1.5.
Model 2 has the form:

modella0_,al _,a2_, f1_, f2_]:= a0+ al line[f1] 4 a2 line[ /2],

where f2 is assumed to be the higher frequency line.

Adopt uniform priors for all parameters and assume alower bound of 0 and an upper bound
of 10 for a0, al and a2. For the two spectral line model, we need to carefully consider the
prior boundaries for f1 and f2 to prevent the occurrence of two degenerate peaks in the joint
posterior. Adopt a range for 2 = 1.0 to 5.0. Since by definition, f1 is the lower frequency
line, at any iteration the current value of f1 must be less than current value of f2. Thus

P(flle,MzJ)Zfﬁ-



